展开文章目录
文章目录
  1. 1. 监测目标与核心意义
  2. 2. 系统功能构成与监测内容
  3. 3. 典型设备配置表
  4. 4. 应用成效与发展方向

在城市化进程不断加快的背景下,城市中高层建筑、大型钢结构、特种构筑物数量迅速增长。受长期荷载、基础沉降、风震作用、温差影响等因素作用,建筑结构可能逐渐出现倾斜、开裂、变形、沉降等隐患,严重时将威胁人员生命财产安全。因此,对建筑结构物进行长期、连续、科学的监测,已成为提升城市建筑安全运行水平的重要手段。

建筑结构监测系统可对建筑物的关键响应指标进行数据采集、趋势分析和智能预警,帮助管理人员提前识别潜在问题,及时采取加固、修复等处置措施,最大限度地延长结构物的使用寿命、减少事故发生。

基于 GNSS 的建筑结构物运行状态监测系统建设方案

1. 监测目标与核心意义

1.1 提升结构物运行可视性与透明度

高层建筑、桥塔、风机塔筒等结构在服役过程中受荷载与环境共同作用,结构状态会逐渐发生变化。通过部署多源传感器监测系统,可实现对结构外形变化、内力响应、地下水位、温湿振动等全方位状态的量化感知,构建“建筑状态一张图”。

1.2 预警结构异常演化趋势

结构沉降与倾斜往往是结构疲劳、地基变形或荷载异常的前兆。系统通过设定阈值模型,对关键指标进行智能研判与预警输出,协助运维人员提前干预、分级响应,避免突发结构性灾害。

1.3 支撑科学维护与智能决策

通过历史监测数据积累,可建立建筑物的健康档案,辅助开展安全等级评估、残余寿命预测与维护策略优化,实现从“被动抢修”向“主动运维”转型。

2. 系统功能构成与监测内容

建筑结构监测系统以数据采集终端为基础,结合无线传输、云端分析和可视化平台,形成一个结构健康数字化管控体系。其功能分布如下:

2.1 建筑物沉降与位移监测

  • 使用 GNSS 卫星定位设备实时监测建筑物整体空间坐标变化;
  • 适用于高层建筑、大型厂房、广场地下建筑等结构沉降控制。

2.2 结构内部变形监测

  • 在楼层、支撑柱、剪力墙等部位布设固定测斜仪,用于检测竖向构件侧移、累积变形趋势;
  • 有助于判断是否存在非对称受力或局部结构软化问题。

2.3 地下水位监测

  • 安装渗压计、水位计,监测地下结构与基础地基的水文变化;
  • 可用于分析地下车库、地铁附属建筑等水压扰动对结构稳定性的影响。

2.4 应力与振动响应监测

  • 采用应力应变计和加速度计监测柱、梁、节点等关键部位的力学响应;
  • 对于大型场馆、风荷载区建筑等,能够监控风振、地震等动态扰动。

2.5 环境因素监测

  • 部署温湿度计、风速风向仪等感知设备,用于监测建筑周边气候变化对结构的影响;
  • 可作为应力分析与耐久性计算的输入边界条件。

3. 典型设备配置表

监测对象监测内容监测系统/站点监测仪器类型
建筑物外部沉降整体位移变化一体化 GNSS 监测站GNSS 接收机
结构内部变形水平/竖向位移深层位移监测系统固定测斜仪
地下结构状态渗水/水压地下水位监测系统渗压计、水位计
应力响应构件应力/应变应力应变监测系统应力计、应变计
振动响应加速度变化振动监测系统加速度计
环境参数气象因素环境监测系统风速仪、气压表、温湿度传感器

4. 应用成效与发展方向

通过建筑结构健康监测系统的建设,可实现以下成效:

  • 显著提升对结构运行状态的透明化掌控;
  • 降低安全隐患带来的管理成本与运营风险;
  • 支撑建设工程全过程精细化监管与竣工后动态评估;
  • 为智慧城市、超高层建筑、装配式建筑等新型结构体系的质量保障提供基础设施。

未来,建筑结构监测将与 BIM 平台、AI 建模、数字孪生技术深度融合,迈向“感知-分析-反馈-决策”全闭环智能管理,为城市安全和建筑可靠性筑牢数字防线。

相关文章

  • 物联网实训教室管理系统建设方案(智慧教室系统)

    物联网实训教室管理系统建设方案(智慧教室系统)

    智慧数字物联实训室管理系统基于物联网、人工智能、大数据等现代化技术建立一套以物联网控制为基础,软件平台为业务承载体系的智能化管控平台。首先,利用物联网控制技术将实训室及实训设备集中在同一个平台进行统一管理;其次利用大数据、人工智能等现代化信息技术,实现对实训室管理体系的流程、节点、过程进行智慧数字化赋能。 1. 智慧实训物联管理系统架构 智慧数字物联实训管理系统整体架构采用“数子物联网+”模式进行设计,系统整体设计为 8 层模型架构,两种应用交互体系,每层模型均采用模块化设计,满足实训室各种不同…

  • 地质灾害(边坡)监测解决方案介绍(通用文档)

    地质灾害(边坡)监测解决方案介绍(通用文档)

    随着气候变化加剧及人类活动频繁,地质灾害日益频发,严重威胁人民群众生命财产安全和社会稳定。滑坡、崩塌、泥石流、地裂缝等灾害类型呈现高频高危的态势,特别是在山区、建设区、交通沿线等重点区域,对地质灾害的科学监测和预警显得尤为关键。 1. 监测背景:防范为主,科学应对地质风险 地质灾害可由自然因素(如暴雨、地震)或人为因素(如开挖、爆破)引发,其危害性强、突发性高、预警难度大。近年来,地质灾害频发引起了政府和行业的高度重视,尤其是滑坡、崩塌、泥石流成为地质环境研究的核心方向。为减少人员伤亡、财产损失…

  • 485 型温振变送器,墙体/机械温振传感器 RS-WZ3/WZ1-*-1

    485 型温振变送器,墙体/机械温振传感器 RS-WZ3/WZ1-*-1

    温振传感器是一种高精度仪器,用于同时监测和测量环境的温度和振动两个参数。这种传感器将温度测量与振动分析相结合,从而能够提供关于被测设备或环境状况的更全面的信息。利用温振传感器,用户可以及时发现设备的异常工作状态,比如过热或过度振动,从而预防潜在的故障或损坏。

  • 智慧教室中的窗帘控制系统(物联网教室)

    智慧教室中的窗帘控制系统(物联网教室)

    窗帘智能控制主要利用窗帘控制器与电动窗帘组件将实训室窗帘集中到一个平台进行智能化控制和管理,与环境监测模块进行联动,可根据光照强度自动调节、升降窗帘。如图: 本系列文章介绍了一个物联网实训教室的方案,其核心技术是通过对能耗、环境及配套教学设备的监测和控制,实现对教室的物联网化智能管理,也算是智慧教室的一种吧。方案稍微调整(即改变平台软件)可通用于一班教室甚至是企业园区,本站为方便阅读俭省了部分内容,全部内容见系列第一篇之附件。 智慧数字物联实训管理系统建设方案(智慧教室).docx 第一章 建设…

  • 场所环境综合监测系统建设方案(粮库/水文/气象/农田等)

    场所环境综合监测系统建设方案(粮库/水文/气象/农田等)

    场所环境综合监测子系统是通过采用高级传感器复合感知技术实时监测自然资源环境中的水质、气体、土壤、肥料和电力等关键指标。结合视频监控和地图技术,子系统提供了一体化的视频传感监管能力和动态全局监控能力。通过实时状态展示、超标数据告警和处置、传感数据的类比和同比数据展示等功能,满足各行业对于周边情况感知监管的需求。 1. 场所环境监测系统设计 系统由物联感知仓、Lora 转换器、传感器以及系统管理软件组成。系统架构如下图所示: 1.1 场所环境监测系统前端设计 (1)物联感知仓 连接各类传感器,接收传…

  • 智慧校园中的物联网控制系统(智慧教室)

    智慧校园中的物联网控制系统(智慧教室)

    智慧校园中的物联网控制系统(智慧教室)包含:门禁控制、电源控制、能耗监测、多媒体控制、空调控制、窗帘控制、环境监测、视频监控等,系统结构如下: 物联控制系统利用物联网控制技术实现对实训室门禁、电源、多媒体、能耗、空调、窗帘、视频等前端物联控制设备进行统一管控,前端智慧门禁控制、智慧电源控制、能耗监测、多媒体控制、空调控制、窗帘控制、智慧教育网关等物联控制设备均采用总线型架构组网,所有前端控制采集设备全部接入智慧教育网关(以下简称“网关”),由网关进行统一管控(智慧教育网关具备边缘计算能力和独立的…

- 联 系 我 们 -

+86 186-2315-0440

在线咨询:点击这里给我发消息

电子邮箱:i@zzptech.com

工作时间:9:00~18:30,工作日

微信客服